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Abstract 

In this paper, it is shown that some of the convenient 
characteristics of LMI-based methods can be extended 
to a class of nonlinear systems. The main idea is 
to use a computationally tractable sufficient condition 
for positivity of a function, namely the existence of a 
%um of squares” representation. By using an extended 
set of variables and redundant constraints, it is shown 
that the conditions can be written as linear matrix in- 
equalities in the unknown parameters. To illustrate 
the method, we present an example dealing the with 
Lyapunov stability of systems described by polynomial 
vector fields. 

1 Introduction 

In the last few years, Linear Matrix Inequalities (LMI) 
based methods have demostrated an amazing versatil- 
ity in the systems and control area [3]. The numer- 
ous applications of semidefinite programming to basic 
applied mathematics problems (mainly, powerful re- 
laxations of NP-hard combinatorial optimization prob- 
lems, see for example [7]) shows that this trend is bound 
to continue in the next few years. LMI methods are a 
lot more than a temporary “control fad,” having deep 
and interesting connections with many important re- 
sults in other research fields. 

Some common, equivalent interpretations of semidefi- 
nite programming are to view it as an method to check 
the positive definiteness of a matrix depending linearly 
on some parameters, or the nonempty intersection of a 
linear subspace with the positive semidefinite cone. An 
alternative viewpoint can also be taken, by considering 
the LMI conditions as a procedure for checking the exis- 
tence of a positive definite element in a linear family of 
quadratic forms. As shown in the paper, this interpre- 
tation can be extended to more general forms (not nec- 
essarily quadratic). By considering a suitable sufficient 
condition (the existence of a sum of squares decompo- 
sition), efficient computational tests can be developed. 

As (an motivating example of the methodology, we will 
deal in this paper mainly with the stability analy- 
sis of systems described by polynomial vector fields. 
The same techniques can be employed to  many, more 
complicated problems. Some concrete applications 
currently being explored are related to parameter- 
dependent Lyapunov fimctions, improved conditions 
for checking the copositivity of a matrix, and the 
formulation of enhanced semidefinite relaxations for 
quadratic programming problems. 

The paper is organized as follows: in Section 2 some 
background material on multivariable forms and poly- 
nomials is presented. In Section 3 a sufficient condition 
for positivity is introduced and analyzed, as well as the 
corresponding algorithm for verifying its applicability. 
In the next section the computational complexity of the 
procedure is analyzed. Finally, in the last two sections, 
an example of the methodology is presented and some 
conclusions are made. 

2 Positivity of forms 

Stability analysis can be reduced, using Lyapunov the- 
ory, to the existence of a positive definite function, such 
that its time derivative along the trajectories of the sys- 
tem is negative. As is well known, to prove asymptotic 
stability of a fixed point, of vector field (the origin, with- 
out loss of generality) it is required to find a Lyapunov 
function V ( x )  such that: 

x =  f ( x ) ,  V(X)  > 0 x # 0, 

for all x in a neighborhood of the origin. If we want 
global results, we need additional conditions such as V 
being radially unbounded. 

In the specific case of linear systems j. = Ax  and 
quadratic Lyapunov functions V ( x )  = xTPx  this sta- 
bility test is equivalent to the well-known LMIs 

A ~ P +  PA < 0, P > 0. 
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3 A sufficient condition for positivity The existence of a P satisfying this last condition can 
be checked efficiently, using for instance interior point 
methods. 

In the attempt to extend this formulation to more gen- 
eral vector fields (not necessarily linear) or Lyapunov 
functions (not necessarily quadratic) , we are faced with 
the basic question of how to  verify in an algorithmic 
fashion the conditions (1). If we want to develop an al- 
gorithmic approach to nonlinear system analysis, simi- 
lar to what is available in the linear case, we need some 
explicit way of testing the global positivity of a function. 

This is a very important problem, and lots of research 
efforts have been devoted to it. In the specific case of 
polynomial functions, there is a variety of approaches, 
see [l] for a survey of existing techniques. An obvious 
necessary condition is that the degree of the form (or 
polynomial) be even. It is possible to show that the 
general problem of testing global positivity of a poly- 
nomial function is in fact NP-hard. Therefore, (unless 
P=NP) every method guaranteed to obtain the right 
answer in every possible instance will have unaccept- 
able behavior for a problem with a large number of 
variables. This is the main drawback of theoretically 
powerful methodologies such as quantifier elimination 
[5, 101. 

If we want to avoid the inherent complexity problems 
related with the exact solution, the question arises: are 
there any conditions, that can be tested in polynomial 
time, to guarantee global positivity of a function? As 
we will shortly see, one such condition is given by the 
existence of a sum of squares decomposition. 

Before proceeding on to the next section, a brief re- 
view of the notation is in order. We will consider in 
this paper the set Fn,* of homogeneous forms of de- 
gree m in n variables (21,. . . , zn} ,  with real coeffi- 
cients. Every such form can be written as a sum of 
(7’Z-l) monomials, each one of the form c, n;=, z,**, 
with C,”=,az = m. If we are dealing with polyno- 
mials instead of forms, it is possible to convert ones 
into the others by homogenization and dehomogeniza- 
tion. Concretely, given any form in F,,,, we can ob- 
tain a polynomial in n - 1 variables and degree less 
than or equal to m by setting any variable (for ex- 
ample, 2,) to the value 1. Conversely, given a poly- 
nomial p ( z l , .  . . , 2,) of degree dl, it can be homog- 
enized into a form of degree dz 3 dl by defining 

Homogenization of a polynomial into a form of even 
degree preserves the property of being positive semidef- 
inite (see [13] for details). 

d f ( ~ 1 ,  * . . , ~ n ,  zn+1) := z,Z+i~(zl/zn+l,.. ., zn/zn+l)- 
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A deceptively simple sufficient condition for a real- 
valued function F ( z )  to be nonnegative everywhere is 
given by the existence of a sum of squares decomposi- 
tion: ’ 

F ( z )  = cfm 
i 

It is clear that if a given function F ( z )  can be written 
as above, for some fi, then it is nonnegative for all 
values of z. 

However, the question immediately arises: when is such 
decomposition possible? Naturally, in order for the 
problem to make sense, some restriction on the class 
of functions fi  has to be imposed. Otherwise, we can 
always define fi  to be the square root of F ,  making the 
condition both useless and trivial. 

For the case of polynomials, this is a well-analyzed 
problem, first studied by David Hilbert more than a 
century ago. In fact, one of the questions in his famous 
list of twenty-three unsolved problems presented at the 
International Congress of Mathematicians at Paris in 
1900, deals with the representation of a definite form 
as a sum of squares of rational functions. 

For notational simplicity, we will use the notation 
psd  for “positive semidefinite” -and SOS for “sum of 
squares.’’ Following the notation in references [4, 131, 
let be the set of psd forms of degree m in n vari- 
ables, and En,m the set of forms p such that p = Ck h:, 
where h k  are forms of degree m/2.  

Hilbert himself noted that not every psd polynomial (or 
form) is SOS. A simple, more modern counterexample 
is the Motzkin form (here, for n = 3) 

Positive semidefiniteness can be easily shown using the 
arithmetic-geometric inequality, and the inexistence of 
a SOS decomposition follows from standard algebraic 
manipulations (see [13] for details), or the procedure 
outlined below. 

Hilbert gave a complete characterization of when these 
two classes are equivalent. There are three cases for 
which the equality holds. The first one, is the case of 
forms in two variables (n = 2), which are equivalent by 
dehomogenization to polynomials in one variable. This 
is easy to show using a factorization of the polynomial 
in linear and quadratic factors. The second one, is the 
familiar case of quadratic forms (i.e. m = 2) where the 
sum of squares decomposition follows from the eigen- 
value/eigenvector factorization. There is also a sur- 
prising third case, where P3,4 = &,4, corresponding to 
quartic forms in three variables. 



The sum of squares decomposition is the underlying 
machinery in Shor’s global bound for polynomial func- 
tions [15], as is explicitly mentioned in [14]. It has also 
been presented as the “Gram matrix” method in [4] and 
more recently in [ll] ,  although no mention to interior 
point methods is made: the resulting LMIs are solved 
via decision methods. A related scheme also appears 
in [ S ]  (note also the important correction in [6] ) .  

The basic idea of the method is the following: express 
the given polynomial as a quadratic form in some new 
variables z.  These new variables are the original x ones, 
plus all the monomials of degree less than or equal to 
m / 2  given by the different products of the x variables. 
Therefore, F ( x )  can be represented as: 

F ( x )  = zTQz (3) 
where Q is a constant matrix. If in the representation 
above Q is positive semidefinite, then F ( x )  is also psd. 
This is the idea in [2],  for example, and it can be shown 
to be conservative, generally speaking. The main rea- 
son is that since the variables zi are not  independent 
the representation (3) might not  be unique, and Q may 
be psd for some representations, but not for others. 
Similar issues appear in the analysis of quasi-LPV sys- 
tems, see [9]. By using identically satisfied constraints 
that relate the zi variables among themselves (of the 
form zizj = zkzl or 2; = zkz l ) ,  it is easily shown that 
there is a linear subspace of matrices Q that satisfy 
(3). If the intersection of this subspace with the pos- 
itive semidefinite matrix cone is nonempty, then the 
original function F is guaranteed to be SOS (and there- 
fore psd). This follows from an eigenvalue decompo- 
sition of Q = T T D T , d i  2 0 ,  which implies the SOS 

F ( z )  = C i d i ( T z ) q .  Conversely, if F can indeed be 
written as the sum of squares of polynomial, then ex- 
panding in monomials will provide the representation 

. (3). 

Example 1 The following example is f rom [l ,  Exam- 
ple 2.41, where it is required t o  find whether or not  the 
quartic polynomial 

p(21,22,23) = Z‘: - (22223+l)Zq+(x2,x~+22223+2),  

is positive definite. 

B y  constructing the Q matrix  as above, and solving the 
corresponding LMIs, we obtain the sums of squares de- 
composition: 

P ( x l , x 2 , x 3 ) = 1 + x :  + ( 1 - Z q + x 2 x 3 ) 2 ,  

that immediately establishes global positivity. Notice 
that the decomposition actually proves a stronger fact ,  
namely that P(xl ,x2,23) 2 1 f o r  all values of x i .  

The most important properties that distinguish this 
condition from other approaches are its relative 

tractability and the fact that it can be easily extended 
to the uncertain case (i.e. when we are looking for a 
psd 17, subject to additional conditions). 

It should be noted that,, at least in principle, the 
method has some degree of conservativeness. As ex- 
plained above, this is because the class of psd poly- 
nomials is not equal to the SOS ones. It is not clear 
yet how relevant this gap is in practical terms. Af- 
ter all, almost every time the positivity of a function 
needs to be established (for example, in backstepping 
methods), this is usually done by constructing a SOS 

representation, either implicitly or explicitly. In any 
case: there is a possible workaround, at some compu- 
tational cost. Artin’s positive answer to Hilbert’s 17th 
problem assures for a psd F ( x )  the existence of a poly- 
nomial G ( x ) ,  such that F(x)G2(x) can be written as 
a sum of squares. In particular, Reznick’s results [12] 
show that if F is positive definite it is always possible 
to take G(z) = (E z:)~, for sufficiently large T .  

Example 2 Consider the case of the Motzlcin f o r m  
given in equation (2). As mentioned before, it cannot 
be written as a s u m  of squares of polynomials. Even  
though it is only semidefinite (so in principle we can- 
not  apply Reznick’s theorem), after solving the LMIs 
we obtain the decomposition: 

( x 2  + y 2  + 2) M ( z ,  y ,  z )  = 

+-(xy3 - x3y)2 + - (xy3  + x3y - 2xy22)2,  

( ~ Y Z  - 9 ~ ~ ) ~  + (zy2z - xz3 )2  + ( x 2 y 2  - z4)2 + 
1 3 
4 4 

from where nonnegativity is  obvious. 

4 Computational considerations 

The computational cost of the procedure clearly de- 
pends on both the degree of the polynomial, and the 
nurnber of variables. The number of monomials of de- 
gree less than or equal to m / 2  (m is even) is N ,  := 
( ). This is the size of the resulting LMI, as- 
suming no simplifications occur (which is not usually 
the case). The number of constraints (additional vari- 
ables in the LMIs) can be large, especially when using 
many variables and high degree polynomials. For a 
fixed degree, however, that number is always a polyno- 
mial expression in n (it is always bounded by NZ, for 
instance). A complete analysis of these quantities has 
been presented in [4]. 

n--l+m/2 
m,2 

A minor inconvenience that might happen, depending 
on the given polynomial and the constraints employed, 
is that the resulting LMIs can be feasible, but not 
strictly feasible (i.e. the matrix Q can be made pos- 
itive semidefinite, but not positive definite). We will 
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$zTQz,  where z = 1x1, x:, X I X ~ , X &  x 2 I T  and 

Figure 1: Phase plot and Lyapunov function level sets. 

see an instance of this in the example in the next sec- 
tion. In many cases, this can be fixed by a presolving 
stage, where some variables are eliminated, and the di- 
mension of the problem is reduced. The current LMI 
solvers (mostly interior-point based) handle these type 
of problems with varying degree of success. Clearly, 
more work needs to be done, both at the theoretical 
and implementation level, in order to deal with these 
type of problems. Nevertheless, the highly structured 
semidefinite programs resulting from the proposed ap- 
proach usually allows for an easily achievable reduction 
in the dimensionality. 

5 Example: stability analysis 

In this simple problem, we are looking for a Lyapunov 
function to prove global stability of a nonlinear system. 
The system is described by: 

2 
x1 = - x 1  -2x, 
x 2  = - 2 2  - 2 1 x 2  - 2 x 2 ;  

3 

Notice that the vector field is invariant under the sym- 
metry transformation (XI, x 2 )  ( X I ,  - 2 2 ) .  We could 
potentially use this information in order to limit the 
search to symmetric candidate Lyapunov functions. 
However, we will not do so, to show the method in 
its full generality. To look for a Lyapunov function, 
we will use the general expression of a polynomial in 
X I ,  2 2  of degree four with no constant or linear terms 
(because V(0) = 0, and V has to be positive definite). 
We use a matrix representation for notational clarity. 

T 
0 CO2 CO3 CO4 

c 4 0  . 

It is easy to verify that V can be represented as V ( x )  = 

which A i  being arbitrary real numbers. The condition 
for the existence of a SOS representation for V, obtained 
as explained in the paper, is therefore Q 2 0. 

For the derivative, we obtain after some algebra that 

- L 

where the ai are linear functions of the c i .  For example, 
we have a 1 2  = - 4 ~ 2 0  - c12 - 2c12 - 2 ~ 2 ,  and a 4 2  = 0. 
The full expressions are omitted for space reasons. 

Writing it as a quadratic expression, we have 
V ( x )  = -$wTRw, with. the vector w = 
[ x ~ , x ~ , x ~ x ~ , x ~ ~ x ~ , x ~ x ~ ~ x ~ x ~ l x ~ ] T .  The expression 
for the matrix R is given in Table 1. 

Again, here vi are arbitrary real parameters. If V has 
to be negative, then the SOS condition is R >_ 0. Notice 
that having a 4 2  = 0 immediately implies that the mul- 
tipliers V Q ,  v11, v12,  ~ 1 3 ,  v14 and the coefficients ~ 4 1 ,  a 3 3  

should also vanish. This way, the LMIs are consider- 
ably simplified. 

After solving the LMIs, it turns out that for this spe- 
cific example it is even possible to pick a particularly 
elegant solution, given by a quadratic Lyapunov func- 
tion. This can be achieved by minimizing the sum of 
diagonal elements corresponding to the nonquadratic 
terms, subject to the LMI constraints. In fact, we can 
choose all the ci, A i  and vi equal to zero, except c20 = 1 
and c02 = 2, i.e. 

V ( X 1 , X 2 )  = X I  2 +2x;. 

In this case, we have 

In Figure 1 a phase plot of the vector field and the level 
sets of the obtained Lyapunov function are presented. 
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Table 1: The matrix R. 

It should be remarked that the considerable simplifi- 
cation in the final answer is not really necessary. Any 
feasible solution of the LMIs will provide a stability- 
proving Lyapunov function. 

6 Conclusions 

The sum of squares decomposition is a very useful suffi- 
cient condition for positivity of a multivariable polyno- 
mial. It can be obtained at a reasonable computational 
cost, using LMI methods. One of the big advantages of 
the proposed procedure is that it is a completely algo- 
rithmic procedure. All the computations can be carried 
through in a deterministic fashion, in polynomial time. 

The basic idea of the procedure can be applied to nu- 
merous problems in the systems and control area. In 
this paper we have shown one immediate application, 
dealing with the analysis of global stability of nonlinear 
systems via polynomial Lyapunov functions. By using 
the methodology described in this paper, the search for 
a stability-proving Lyapunov function can be efficiently 
carried out, generalizing very succesful schemes for the 
linear case. 

Of course, one of the main differences between linear 
and nonlinear control is that in the latter, global behau- 
ior is not necessarily the most important consideration: 
in applications, many successful nonlinear schemes are 
not globally stable. However, tools used successfully in 
the linear case to deal with these problems (for exam- 
ple, S-procedure) can usually be applied, with suitable 
modifications. 
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